ER 系列工业机器人 ModbusTCP 调试手册

(RCS2 V1.6)

修订记录

序号	日期	作者	版本	描述		
1	2018.08.17	吴俣	V1.0	初次发布		
2	2018.01.16	王正谦	V1.1	1、 修改了个别语言描述 2、 修改了模拟量 IO 点,即 支持浮点数据		
3	2018.03.05	赵朋和	V1.1.2	1、 增加了心跳检测位(对 外)		
4	2019.12.26	孙大卫 时伟青	V1.2 V1.4	1、IO 变量新建方法更新 2、IO 指令更新 3、增加了通信操作示例		
5	2020.01.13	时伟青	V1.5	1、 修改不正确的描述		
6	2022.01.10	王正谦	V1.6	高存器数量扩增为 1500, [1,100] 仍为原有定义, [101,1500] 寄存器可在内部 PLC 中读写 1、增加 2.4 ModbusTCP 指令章节 2、增加 2.5 Multiprog 中读写寄存器章节 3、修改 ModbusTCP 点表		

目 录

前	詳		3
第	1 章	功能简介	4
第	2 章	ModBusTcp 协议介绍	4
	2.1	ModBusTCP 协议报文	4
	2.2	ModBusTCP 协议功能码	5
	2.3	ModBusTCP 接口配置	5
	2.4	ModBusTCP 指令	6
		2.4.1 GetModConState	6
		2.4.2 ReadModbusReg	7
		2.4.3 WriteModbusReg	7
	2.5	Multiprog(PLC)中读写寄存器	8
		2.5.1 ER_RobModbusCnctState	8
		2.5.2 ReadModbusReg	8
		2.5.3 WriteModbusReg	9
第	3 章	接口调试	10
	3.1	ModScan 调试助手	10
	3.2	虚拟数字量交互示例	12
	3.3	虚拟模拟量交互示例	14
	3.4	远程启动机器人程序	15
	3.5	远程加载机器人程序	16
	3.6	远程复位程序指针	18
		调试注意事项	
第	4 章	ModBusTCP 点表	21

前言

概述

本手册适用于控制系统 RCS2 V1.26 及以上版本,描述埃斯顿二代控制器 ModBusTcp 协议接口功能介绍,包括功能简介、协议介绍、接口调试和功能点表。

读者对象

本手册仅供受过培训,熟悉各种适用国家标准的"控制、自动化和驱动工程" 领域专业人员。

• 系统生产商:对自动化系统功能设计的技术人员。

• 系统集成商: 指自动化设备集成的技术人员。

注意事项

- 在安装和调试这些组件时,操作人员必须严格遵循本文档的说明和解释。
- 相关负责人员必须确保所述产品的应用或使用满足所有安全要求,包括相关法律、法规、准则和标准。
- 尽管本文档经过精心编制,但由于其中所描述的产品仍处于不断更新换代中, 我们可能不会在每次更新后都检查文档中所描述的产品性能数据、标准或其它 特性总是与实际产品相一致。
- 本文档中难免会出现一些技术或者编辑错误,我们保留随时对文档信息做出修改之权力,恕不另行通知。对于已经变更的产品,如果本文档中的数据、图表以及文字描述没有修改,我们将不再特别加以声明。
- 任何人不得对软、硬件配置进行文本档中规定之外的修改,ESTUN 公司对因此而造成的一切后果不承担任何责任。
- 本文档中出现图示单位在没有特别标注说明时,默认单位为毫米 **mm**。

安全说明

▲ 警告	受伤的危险 不遵守本标志相关的安全说明将危及个人生命和健康安全 。
注 注意	对环境和设备有危险 不遵守本标志相关安全说明可能明显危害环境和设备安全。
1 说明	说明或提示 该标志表示这些信息能够帮助您更好的理解安全说明。

第1章 功能简介

ModBusTcp 协议接口是指外部逻辑控制器(PLC 等)通过标准工业总线协议(ModBusTCP)与机器人通讯,读写机器人的虚拟 IO 端口的一种通讯方式。机器人可通过 ModBusTCP 的方式与外部设备进行交互,而无需额外扩展 IO 端口。

第2章 ModBusTcp 协议介绍

ModBus 是目前应用最广泛的现场总线之一,1999 年又推出了以太网运行的 ModBusTCP(工业以太网协议)。ModBusTCP以一种比较简单的方式将 ModBus 帧嵌入 TCP 帧中。IANA 给 ModBus 协议赋予 TCP 端口号 502,这是其他工业以太网协议所没有的。ModBusTCP 还拥有其它工控设备的支持,如工业 人机界面、变频器、软启动器、电动机控制中心、以太网 I/O、各种现场总线的网桥等。

2.1 ModBusTCP 协议报文

ModBusTCP采用TCP/IP和以太网协议来传输 ModBus 信息,因此与 ModBus 串行链路数据单元类似, ModBusTCP 的应用数据单元就是将 ModBus 简单协议数据单元(PDU)按照 TCP/IP 协议进行封装。一个 TCP 帧只能传送一个 ModBusADU,建议不要在同一个 PDU 中发送多个 ModBus 请求或相应。

以下表格为 ModBusTCP 的请求、应答报文:

请求:	传输标志	协议标志	长度	从站号	功能码	寄存器起始地址	寄存器长度
长度	2	2	2	1	1	2	2
(Byte)	2	2	2	1	1	2	2
应答:	传输标志	协议标志	长度	从站号	功能码	长度	数据值
长度	2	2	2	1	1	4	
(Byte)			2	1	ı	1	

2.2 ModBusTCP 协议功能码

ModBus 的数据结构将数据区分为以下四种:

保持线圈(Holding Coils)	可读可写的 BOOL 型变量		
输入线圈(Input Coils)	只读的 BOOL 型变量		
保持寄存器(Input Registers)	可读可写的 WORD 型(16-bit)型变量		
输入寄存器(Holding Registers)	只读的 WORD 型(16-bit)型变量		

埃斯顿 ModBusTCP 通讯接口目前只支持读写保持寄存器,即以下功能码:

功能码	描述
0x03	读保持寄存器
0x06	写单个保持寄存器
0x10	写多个保持寄存器

2.3 ModBusTCP 接口配置

ER 系列机器人的 ModBusTCP 接口配置如下:

IP: 192.168.6.68 (实时系统 IP 地址)

Port: 502

采集周期>200ms 响应超时>150ms

1 说明

服务器通过检测客户端的请求来判断连接是否存在。若与客户端连接后,超过 5 秒未接收到客户端的请求,服务器将自动断开连接并重新监听 502 端口。

ER 系列机器人在 ModBusTCP 保持寄存器中封装了一层数据结构

	地址	定义	
	40003	读写标志位应答	
	40004	Rob 状态信息	
Rob Send	40005~40014	当前加载工程名	
	40015-40018	用户用 (虚拟数字输出)	
	40019	Rob 执行命令状态	

	40020~40051	用户用(虚拟模拟输出)		
	40052	Rob 操作指令		
	40053	全局速度设置值		
Rob	40054~40063	设置加载工程名		
Receive	40064-40067	用户用(虚拟数字输入)		
	40068~40099	用户用(虚拟输入)		
	40100	读写标志位请求		
	40101			
General		用户用(寄存器已开放到内部 PLC)		
	41500			

2.4 ModBusTCP 指令

ModbusTCP 指令列表:

	GetModConState
● ModbusTCP 指令	ReadModbusReg
	WriteModbusReg

2.4.1 GetModConState

该指令用于获取机器人与外界使用 modbus 通讯的连接状态。对指令参数进行说明:

GetModConState IsConnected

IsConnected: 连接状态(Is Connected)

数据类型: BOOL 变量

参数含义:返回当前的连接状态。

示例 1:

GetModConState(BOOL0)

2.4.2 ReadModbusReg

该指令用于读取指定 Modbus 寄存器的值。对指令参数进行说明:

ReadModbusReg RegisterID RegisterValue

● RegisterID: 目标寄存器 ID 号 (Target Modbus Register ID)

数据类型: int, 取值范围为 101~1500。

参数含义: 想要读取的寄存器 ID 号。

● RegisterValue: 目标寄存器值(Target Modbus Register Value)

数据类型: INT 变量

参数含义:返回读取后的寄存器值。

示例 1:

ReadModbusReg(101, INT0) // 读取 101 寄存器的值

2.4.3 WriteModbusReg

该指令用于设置指定 Modbus 寄存器的值。对指令参数进行说明:

WriteModbusReg RegisterID RegisterValue

RegisterID: 目标寄存器 ID 号 (Target Modbus Register ID)

数据类型: int, 取值范围为 101~1500。

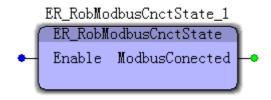
参数含义: 想要修改的寄存器 ID 号。

RegisterValue: 目标寄存器值(Target Modbus Register Value)

数据类型: INT 变量

参数含义: 想要修改的寄存器值。

示例 1:


INT0.value = 100

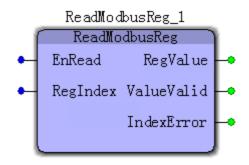
WriteModbusReg (101, INT0) // 将 101 寄存器的值改为 100

2.5 Multiprog(PLC)中读写寄存器

ER_ModbusTCP 功能库提供了读写 Modbus 寄存器的功能。可读写索引号为 101-1500 的寄存器的值,可用于与机器人控制器、外部 Modbus 设备进行数据交互。

2.5.1 ER RobModbusCnctState

功能: 获取标准 ModbusTCP 连接状态。


输入参数:

Enable(BOOL): 为 TRUE 期间持续获取 ModbusTcp 连接状态。

输出参数:

ModbusConcted(BOOL): 为 TRUE 表示 Modbus 已连接。

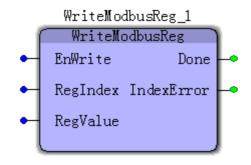
2.5.2 ReadModbusReg

功能: 读取指定 Modbus 寄存器的值。

输入参数:

EnRead (BOOL): 为 TRUE 期间持续获取寄存器的值。

RegIndex (INT): 寄存器 ID 号, 支持 101-1500 范围内输入值。



输出参数:

RegValue (WORD): 寄存器的值。

ValueValid (BOOL) : 为 TRUE 表示输出值有效。
IndexError (BOOL) : 为 TRUE 表示索引号超范围。

2.5.3 WriteModbusReg

功能: 写指定 Modbus 寄存器的值。

输入参数:

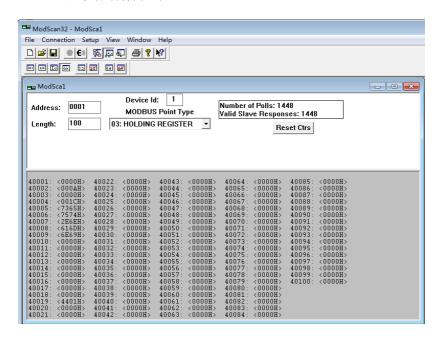
EnWrite (BOOL): 上升沿执行将值写入指定寄存器操作。

RegIndex (INT): 要写入的寄存器 ID, 支持 101-1500 范围输入值。

RegValue (WORD): 待写入寄存器的值。

输出参数:

Done (BOOL): 为 TRUE 表示写入完成。

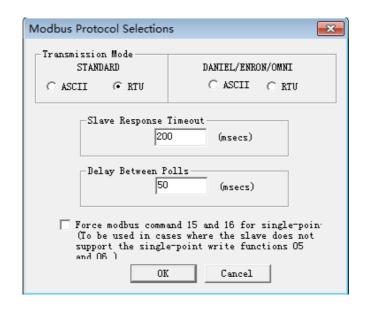

IndexError (BOOL): 为 TRUE 表示索引号超范围。

第3章 接口调试

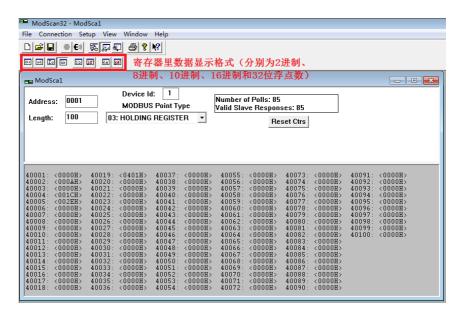
该部分以 ModBus 调试助手 ModScan 为例,说明如何使用 ModBusTCP 通信接口与机器人交互, ModScan 模拟通信主站,机器人作为通信从站。

3.1 ModScan 调试助手


① 该调试软件界面如下:

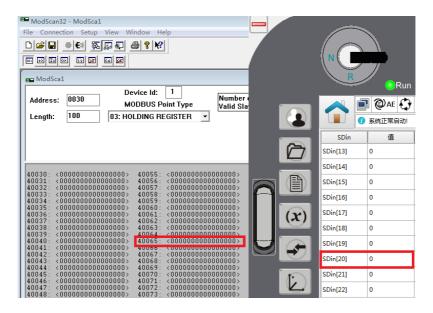

- ② 连接调试步骤
- 1、 将本地电脑连通机器人控制系统。(可 ping 通实时系统 IP192.168.6.68)
- 2、 配置 ModScan 连接参数

点击 Connection→Connect 进入如下界面,配置机器人 IP 和端口号。

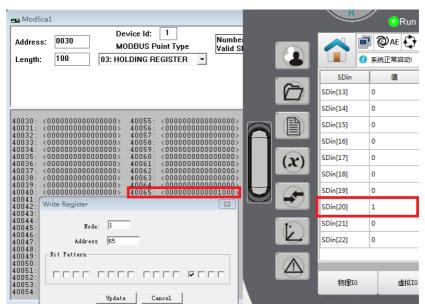


先点击 protocol selection 配置连接参数,再点击 OK 完成配置并连接机器人

3、 Address (起始地址) 设为 1, Length (长度) 设为 100, 功能码下拉选择 03: HOLDING REGISTER(保持寄存器)。

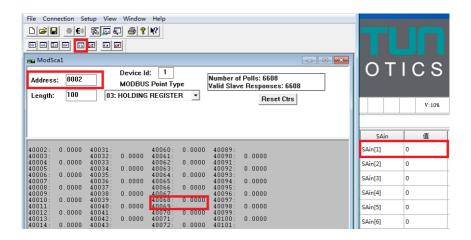

3.2 虚拟数字量交互示例

● ModScan (PLC) 给机器人 SimDI20 端口发送高电平;


通过查看本文第 3 章 ModBus Tcp 点表可知, SimDl20 对应机器人寄存器 40065 的 bit4。

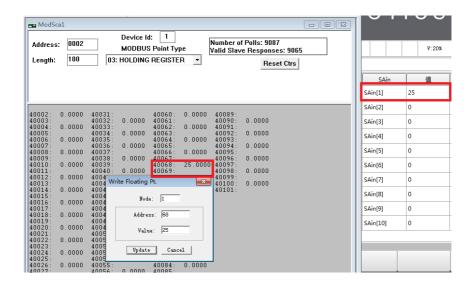
通信交互前:

通信交互后: 双击 ModScan 对应的 40065 寄存器弹出写值窗口, 勾选 bit4 点击 Update 后, 示教器端的 SDin[20]变为 1, 通信成功。


3.3 虚拟模拟量交互示例

ModScan (PLC) 给机器人 SimAl1 端口发送数值 25;

通过查看本文第 3 章 ModBus Tcp 点表可知, SimAl1 对应机器人寄存器 40068 和 40069, 模拟通道传输的是浮点型数据,一个模拟通道对应两个寄存器地址。


ModScan 端需要按照下图所示的设置,显示格式改为 32 位浮点数,起始改为 2,这样才能使 40068 和 40069 两个寄存器显示一个浮点数(与外部设备实际应用中不需要更改任何设置)。

通信交互前:

通信交互后:双击 ModScan 对应的 40068 寄存器弹出写值窗口,Value 写入 25 点击Update,示教器端 SAin[1]收到数值 25,通信成功。

3.4 远程启动机器人程序

- ModScan (PLC) 给机器人发送启动运行程序命令(停止复位操作与此类似);通过查看本文第 3 章 ModBus Tcp 点表可知,所有给机器人发送命令的操作,前提有二:①机器人处于远程励磁状态;②所有命令操作皆配合读写标志寄存器 40100 且上升沿触发有效,远程启动对应的命令寄存器是 40052,值为 0x4。
- ① 将机器人示教器钥匙开关拨至远程状态,机器人将会自动上励磁和加载已经设 为自启动的程序,如下图。

② 确保 40100 和 40052 两个寄存器里值为 0, 首先往 40100 寄存器里写入 0x11, 此时 40019 寄存器状态变为 0x801(该值表示当前系统处于等待命令状态), 再往 40052 寄存器里写入 0x4, 此时机器人程序启动, 40019 寄存器状态变为 0x404(该值表示启动命令执行成功并继续等待新的控制权), 如果后续接着给机器人发送其它命令, 应先把 40100 和 40052 两个寄存器内容清 0。

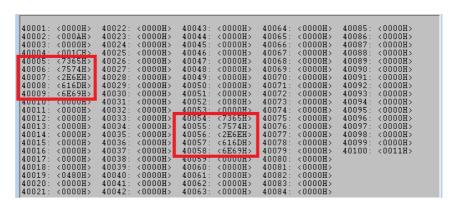
3.5 远程加载机器人程序

 ModScan (PLC) 给机器人发送加载程序命令,程序名为 estun.main,然后 示教器加载该程序;

通过查看本文第 3 章 ModBus Tcp 点表可知,所有给机器人发送命令的操作,前提有二:①机器人处于远程励磁状态;②所有命令操作皆配合读写标志寄存器 40100 且上升沿触发有效,远程加载对应的命令寄存器是 40052,值为 0x80,要加载的程序名存储在以 40054 寄存器开头的后面 10 个寄存器内。

① 机器人程序名 estun.main 对应的 16 进制数值分别为 0x7365、0x7574、0x2E6E、0x616D 和 0x6E69,将上述数值分别存入以 40054 开头的 5 个寄存器内。

② 确保 40100 和 40052 两个寄存器里值为 0, 首先往 40100 寄存器里写入 0x11, 此时 40019 寄存器状态变为 0x801(该值表示当前系统处于等待命令状态), 再往 40052 寄存器里写入 0x80, 此时示教器上加载 estun.main, 40019 寄存器状态变为 0x480(该值表示加载工程命令成功并继续等待新的控制权), 如果

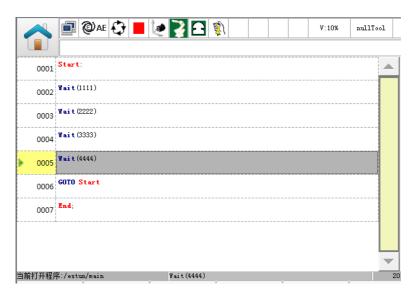


后续接着给机器人发送其它命令,应先把 40100 和 40052 两个寄存器内容清 0。

注: 机器人程序名为 estun.main, 有以下两种方法知道其对应的 16 进制数值:

① 在示教器端手动加载 estun.main 程序,将在以 40005 为首的 10 个寄存器内显示当前加载的程序名。

② 安装 Notepad++软件,很好用的一个文本软件,新建一页,在里面输入 estun.main,选中 estun.main 后,点击菜单栏 插件 -> Converter -> ASCII->HEX,将其转为 16 进制数,然后每隔四位分开,将每个字的高低字 节调换顺序后就是我们需要的结果,如下图:



3.6 远程复位程序指针

ModScan (PLC) 给机器人发送复位程序指针命令,机器人重新加载自启动程序,使 PC 指针回到第一行(如果机器人当前处于运动状态,同样响应该命令,先停止当前运动再重新加载自启动程序)。

通过查看本文第 3 章 ModBus Tcp 点表可知, 所有给机器人发送命令的操作, 前提有二: ①机器人处于远程励磁状态; ②所有命令操作皆配合读写标志寄存器 40100 且上升沿触发有效, 远程复位程序指针对应的命令寄存器是 40052, 值为 0x4000。

① 将 estun.main 设为启动程序, 当前 PC 指针停留在第 5 行。

② 确保 40100 和 40052 两个寄存器里值为 0, 首先往 40100 寄存器里写入 0x11, 此时 40019 寄存器状态变为 0x801 (该值表示当前系统处于等待命令状态), 再往 40052 寄存器里写入 0x4000, 此时机器人重新加载 estun.main 程序, PC 指针回到第一行, 40019 寄存器状态变为 0x4400(该值表示复位程序指针命令成功并继续等待新的控制权), 如果后续接着给机器人发送其它命令, 应先把 40100 和 40052 两个寄存器内容清 0。

3.7 调试注意事项

- 本文介绍默认机器人作为 Modbus Tcp 通信从站,外部设备作为 Modbus Tcp 通信主站,机器人只接受一个主站的连接,不可以多个客户端同时连接机器人(如有该需求请联系埃斯顿技术人员);如果外部设备主站通信协议部分是由个人编制,可以先用 ModSim 测试功能可用后再去连接机器人。
- IO 通信部分机器人无论处于手动、自动或远程模式,系统都会响应处理,而命令操作部分,机器人必须处于远程且励磁状态,触发方式皆上升沿触发有效,按顺序先打开控制权限(40100)再下发对应的命令(40052)。
- 通信交互时首先应确定两端设备通信寄存器地址是正确的,否则肯定不会成功。当外部设备给机器人发送数据时,可以先确定下 SimDl 对应的寄存器,因为从示教器端看 SimDl 信号接收情况最直观,当 SimDl 对应的外部设备通信地址确定下来时,可以根据机器人通信点表顺序偏移来确定其它的通信寄存器地址,当外部设备接收机器人数据时,同样可以通过 SimDO 来确定地址。
- 当与外部设备交互时,外部设备可以通过机器人返回的状态信息判断命令是 否下发成功,在 40019 寄存里每个命令都有对应的成功标志位,此外,在通

信过程中如果 40019 寄存器里错误位为 TRUE,则需要用下发重置状态机命令去清除错误,否则后续的命令系统皆不响应。

当机器人与西门子 PLC 进行 ModBus Tcp 通信交互模拟量数据时,由于西门子数据存储是根据低地址字节作为双字的高字节,高地址字节作为双字的低字节,所以在数据交互时需要特别注意对应关系。

第4章 ModBusTCP点表

Rob 作为 ModbusTCP 通信的 Server,定义了大小为 3000 个字节的数据寄存器区域 (即 MBDataBuffer : ARRAY [0..1499] OF WORD;)

其中,MBDataBuffer[0]~MBDataBuffer[50]为 Server 的发送区域(即外部 PLC 需要从 Rob 获取相关状态信息,只读)

其中,MBDataBuffer[51]~MBDataBuffer[99]为 Server 的接收区域(即外部 PLC 需要对 Rob 写入相关操作指令和信息)

其中,MBDataBuffer[100]~MBDataBuffer[1499]为寄存器通用读写区域(可在Multiprog 和指令中读写)

IVIGITIE	Williprog 和指文中疾与/						
类型	本地地址	寄存器地址	定义	说明	注释		
	MBDataBuff	40001	2 BM/4V 5BM (4-		该值由 1 到 256 循		
_	er[0]	40001	心跳检测位	用于通讯连接检测	环		
	MBDataBuff	40000	当前全局速		值为百分比,即		
_	er[1]	40002	比	_	[1,100]		
	MBDataBuff	40000		返回服务器收到的			
_	er[2]	40003	写权限应答	400100 寄存器的值			
		40004		bit0:手动操作模式			
	MBDataBuff er[3]		Rob 状态信 息	bit1:自动操作模式			
				bit2:远程操作模式			
				bit3:使能状态			
				bit4:运行状态	_		
				bit5:错误状态			
Send				bit6:程序运行状态			
				bit7: 机器人正在动			
				作			
	MBDataBuff	40005			例如加载的工程文		
	er[4]	40005	当前加载工程名	20 4 🖘 🛨	件名为:estun.test,		
	MBDataBuff	40000		20 个字节	则各寄存器的值如		
	er[5]	40006			下:		

类型	本地地址	寄存器地址	定义	说明	注释
	MBDataBuff	40007			[4]0x6573,
	er[6]	40007			[5]0x7475,
	MBDataBuff	40008			[6]0x6E2E,
	er[7]	40006			[7]0x6D61,
	MBDataBuff	40009			[8]0x696E
	er[8]	40009			
	MBDataBuff	40010			
	er[9]	40010			
	MBDataBuff	40011			
	er[10]	40011			
	MBDataBuff	40012			
	er[11]	40012			
	MBDataBuff	40013			
	er[12]	40013			
	MBDataBuff	40014			
	er[13]	40014			
	MBDataBuff	40015	SimDout[1-1	DO 1-16	
	er[14]	40010	6]	50 1 10	
	MBDataBuff	40016	SimDout[17-	DO 17-32	_
	er[15]	10010	32]		
	MBDataBuff	40017	SimDout[33-	DO 33-48	_
	er[16]		48]	200010	
	MBDataBuff	40018	SimDout[49-	DO 48-64	_
	er[17]		64]	DO 40-04	

类型	本地地址	寄存器地址	定义	说明	注释
	MBDataBuff er[18]	40019	Rob 执行命令状态	bit0: 命令为 0 bit1: 急停命令执行 成功 (目前命令执行 成功 bit3: 停止命令 执行 成功 bit4: 复位命令令令令 (目前 表示) bit5: 上便能不可命令 加 bit5: 上便能不可命令 加 bit7: 加 bit7: 加 bit8: 注	命令寄存器为 0 时,bit[0]为 1,命令寄存器为 0 时,bit[0]为 1,命令时,bit[0]为 0 命令执功位置 1 当重命令成功位置 1 到重命的成功可下为 0 x801
	MBDataBuff er[19]	40020	SimAout[1-1	AO 1-16	每两个寄存器对应 一个模拟量点(浮
		-	oj		点型)

类型	本地地址	寄存器地址	定义	说明	注释
	MBDataBuff	40051			
	er[50]				
	MBDataBuff er[51]	40052	Rob 操作指 令	bit2 (0→0x4) : 机	
				器人程序启动	机器人必须处于远
				bit3 (0→0x8) : 机	程励磁状态,所有
				器人程序停止	命令均上升沿触
				bit4 (0→0x10) :	发,配合读写标志
				机器人错误复位	位 40100 为 0x11
				bit7 (0→0x80) :	(命令状态位
				加载工程文件	40019 为 0x801 时
				bit8 (0→0x100) :	可下发指令)
				注销当前工程文件	特别: 当指令执行
				bit9 (0→0x200) :	失败后或状态机出
				设置全局速度	错时, 需利用 bit10
				bit10 (0→0x400) :	来重置指令执行
Recei				指令状态机重置	器,才可以再下发
ve				bit14 (0→0x4000):	新的指令
				复位程序指针	
	MBDataBuff	40053	全局速度值	-	-
	er[52]				
	MBDataBuff	40054	设置工程名		
	er[53]				
	MBDataBuff	40055			
	er[54]				
	MBDataBuff	40056		20 个字节	_
	er[55]			20147	
	MBDataBuff	40057			
	er[56]				
	MBDataBuff	40058			
	er[57]				

类型	本地地址	寄存器地址	定义	说明	注释
	MBDataBuff	40059			
	er[58]				
	MBDataBuff	40060			
	er[59]				
	MBDataBuff	40061			
	er[60]				
	MBDataBuff	40062			
	er[61]				
	MBDataBuff	40063			
	er[62]				
	MBDataBuff	40064	SimDI[1-16]	DI 1-16	_
	er[63]				
	MBDataBuff	40065	SimDI[17-32]	DI 17-32	_
	er[64]	40000			
	MBDataBuff	40066	SimDI[33-48]	DI 33-48	_
	er[65]				
	MBDataBuff	40067	SimDI[49-64]	DI 48-64	_
	er[66]				
	MBDataBuff	40068		Al 1-16	
	er[67]				每两个寄存器对应
			SimAI[1-16]		一个模拟量点(浮
	MBDataBuff	40099			点型)
	er[98]				
_	MBDataBuff	40100	读写标志位		0x11 打开 rob 命令
	er[99]				下发权限
Gener	MBDataBuff	40101			
	er[100]		用户用(寄存		
			器值已开放		读写权限
			到内部 PLC)		

类	型	本地地址	寄存器地址	定义	说明	注释
		MBDataBuff	41500			
		er[1499]				